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Abstract. Developing neural networks for the behavior control of au-
tonomous robots can be a time-consuming task. This is especially the
case for the new generation of complex robots with many sensors and mo-
tors – such as humanoid robots –, for which the networks with hundreds
of neurons can become comparably large. Looking at the correspond-
ing controller design workflow, a number of properties can be identified
that slow down the development process: (1) The difficulty to create,
handle and comprehend the large neuro-controllers, (2) the intricate de-
bugging of neuro-controllers on the hardware, (3) delays caused by fre-
quent time-consuming uploads of controllers to the hardware, (4) poten-
tial damaging of the robot and (5) the overall maintenance effort. This
article proposes several measures to improve this workflow with respect
to the mentioned problems. Some proposed improvements are realized
by using sophisticated evolutionary robotics development software and
suitable graphical network design tools. Such software, here in particu-
lar the Neurodynamics and Evolutionary Robotics Development Toolkit
(NERD), significantly improves the network design process, specifically
by allowing the development partially in simulation, by allowing a visual
design of controllers with graphical network editors and by using suited
neuro-evolution algorithms. Other improvements are based on proper
neuro-modules that can be used to increase the usability of existing con-
trollers. Bundled together, the proposed measures lead to a faster devel-
opment of neuro-controllers. The proposed methods are demonstrated
exemplarily with the Myon humanoid robot, but they can be applied
also to other robots with similar properties and thus can help to improve
the workflow for the neuro-controller design on such robot hardware.
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1 Introduction

In current robotics research, an increasing number of humanoid robotics plat-
forms have been developed [2,6,11,14,18,20,23,28]. One of the recent robots is
the Myon robot [11], built as part of the EU project ALEAR. The robot is de-
signed especially for experiments in the context of language games, in which the
evolution and development of languages between interacting agents is examined.
Therefore, the robot has been designed to be similar to a human eight-year-old
child concerning its body proportions, size and weight. Furthermore, the robot is
designed as a modular machine being a collection of fully autonomous, commu-
nicating body parts. Building such a machine is a challenging task, but – as with
most other humanoid platforms – making the robot actually do something, thus
programming the behaviors of the robot, is a great challenge of its own. Many
programming paradigms for behavioral robotics have been proposed [1,37]. One
approach – the control with recurrent neural networks – sticks out because of
its exceptionally suited features for this robot:

The first reason to use neural networks is the modular robot design. Parallel,
distributed processing is native to neural networks, so distributing and run-
ning such a control network on the more than 20 independent, communicating
processor boards of the humanoid is quite simple. Through the communication
bus between the processor boards, sub-networks on different boards can still be
connected via synapses, which allows large, body-spanning networks without a
central control. The Myon architecture – used with a properly designed neural
controller – even supports the safe removal of body parts at runtime, leaving
both, the removed body part and the remaining robot, intact and functional,
each running with its remaining part of the control network.

A second reason for neural networks is its qualitative similarity to biological
nervous systems in animals. Controlling a robot with neural networks may lead to
insights into the paradigms and principles of animal control. And also the other
way round, knowledge from the control of animals can be used as inspiration
for the control of the robot [40]. This is especially interesting when looking at
the behaviors from the perspective of dynamical systems theory [4,15,29,30], or
from an “embodied cognition” point of view, where one understands behavior
as a result of the dynamical interaction between an agent (animal or robot),
its environment, and its internal (neural) states [31]. The identification of basic
principles of (neural) behavior control in this way is presumably much easier
than doing animal experiments, because an artificial neuro-controller can be
examined much more detailed.

A final good reason to use recurrent neural networks for robot control is the
availability of computational optimization algorithms, like learning rules and
evolutionary algorithms [5,25,33], to create effective behavior control for robots.
Recurrent neural networks have been shown to generate astonishingly robust,
sensor-driven behaviors for complex robots [16,22,41].

The development of neural controller networks (in the following called neuro-
controllers) is not trivial, especially for a robot with many sensors and actuators,
like the Myon robot. As mentioned, in the research community, many neuro-



controllers are generated using evolutionary algorithms [8, 26]. This, however,
usually only applies well for networks with fixed topologies or with relatively
small target networks. This is due to the large search space that can quickly
increase beyond the manageable. An alternative is the manual design of such
networks. A problem here is that network structures can become quite complex,
and many (also positive) effects that are possible with neural networks are often
not intuitive and, therefore, are often neglected. A third approach is a hybrid
usage of both previous approaches: Manual network design assisted by evolu-
tionary algorithms. This approach has the advantage that controllers can be
defined based on knowledge and reasoning as far as possible. Optimization al-
gorithms then can complete and extend the networks, automating the otherwise
manual, time-consuming and error-prone search for the correct network param-
eters. Using artificial evolution on pre-designed networks also reduces the search
space, increases the success rate of the evolutionary search and allows to bias the
search towards a desired control strategy [35]. This means that evolution does
not simply find any solution (often the most simple one), but instead finds more
specific solutions previously outlined by the network designer [32]. This can be
used to confirm given, more elaborate control approaches or to get clues whether
a certain strategy is applicable or not for generating a desired behavior.

This article starts with a description of the typical workflows when using
manual design or a combination of manual design and evolutionary algorithms to
create neuro-controllers for non-trivial robots, shown exemplarily for the Myon
humanoid robot. When working with the robot hardware during the network
design, many problems can arise, that slow down the controller design and even
can damage the hardware. This is especially true for networks generated by evo-
lutionary algorithms, because such networks can lead to behavior which may be
harmful to both the robot and persons working with the robot. Also, debugging
of faulty neuro-controllers, optimization of parameters on the hardware, and un-
derstanding the functionality of the often quite large networks are commonly
underrated problems. These and further problems are addressed in the next sec-
tions and, as far as they have been implemented for the Myon robot, solutions
are proposed. Some of these proposed improvements are network structures that
can be used in neuro-controllers as building blocks to enhance the usability of
the robot. Other enhancements are realized with extensions of the robot and
the network design software. And further improvements are achieved by using
sophisticated design software, such as the so-called NERD Toolkit [36], a soft-
ware framework developed at the Osnabrück University for simulation, neuro-
evolution and neuro-control, or hybrid architectures, as described in [38]. One
statement of this article is that the use of software collections like the NERD
Toolkit substantially improve the network design process for complex robots
like the Myon robot. The basic NERD Toolkit, therefore, is described briefly in
section 3, whereas the particular software features implementing the usability
improvements are described in the subsequent sections.



Although the proposed methods are shown exemplarily for the Myon hu-
manoid robot, most of them can be transferred to other similar systems. These
measures, therefore, can improve the general workflow of neural behavior design
on physical robots.

2 Neuro-Controller Design Scenarios

Developing neuro-controllers is usually a time-consuming task. If networks are
designed manually, all neurons and synapses have to be assembled by the de-
signer to a directed graph. The structure, synaptic weights, bias terms and other
parameters of the neurons have to be chosen and adapted based on reasoning,
experience and often by trial-and-error. With appropriate experience, this can
be sufficient, especially for well known tasks. However, if structures and weights
cannot be inferred based on experience, then finding suitable network struc-
tures and the corresponding weights easily becomes very time-consuming. This
can be reduced by constructing and optimizing networks (partially) assisted by
evolutionary algorithms [7, 9, 10, 19, 21, 24, 26]. On the other hand, an evolution
experiment then has to be designed and a proper fitness function as performance
measure for the evolution has to be defined. This can be as time-consuming as
manual optimization, because often complex behaviors are difficult to describe
by efficient fitness functions. However, the effort put into providing a good fitness
function and a well structured evolution experiment often pays off, because –
once good measures are found – the evolution experiment can be used multiple
times to generate differently structured neuro-controllers. And because many
evolution experiments only need little supervision, this optimization does not
require much manpower, so its application is – in principle – only limited by
the available computational power. This is especially useful if one does not only
strive for an optimal controller for the behavior, but if the aim is also to iden-
tify new neural paradigms and control strategies to learn more about neural
control [32], for which multiple, different network structures are required.

In this section, two typical workflows for the neuro-controller design process
are described. The first workflow describes the manual design of controllers di-
rectly on a robot hardware. The second workflow describes how networks can
be designed manually or assisted by evolutionary algorithms in simulation, fol-
lowed by a final transfer to the robot hardware. It should become clear that
there are bottlenecks slowing down the already time-consuming design process.
After that, common problems and inconveniences of both workflows, that are
possible reasons for a protracted design process, are highlighted and solutions
are proposed. Details on these solutions are then described in sections 4 - 9.

2.1 Typical Workflow for Manual Controller Design On Hardware

A typical workflow for the direct, manual design of neuro-controllers for a com-
plex robot, here exemplarily shown for the Myon robot, is shown in figure 1. The



neuro-controllers here are designed and uploaded with the BrainDesigner Soft-
ware [12], the official software interface of the Myon robot implemented at the
Humboldt University of Berlin. The BrainDesigner provides a graphical, module
centered network editor that allows the construction of neuro-controllers using
the mouse. Currently, the BrainDesigner is the only officially supported interface
to the Myon robot and required for the transfer of neuro-controllers to the robot
and for monitoring of the communication bus.
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Fig. 1. Workflow of the controller design on the hardware. Phases problematic with
respect to time, manpower requirements and maintenance are indicated with icons.
Extra tasks are assistive tasks to complement the unavoidable main tasks of network
design and behavior observation (bold).

When designing neuro-controllers directly on the robot hardware, at least
parts of the robot are permanently required. Every change of the neural net-
work can only be tested with respect to the desired behavior by uploading the
controller to the hardware.

The upload itself requires – depending on the number of connected body
modules and the overall size of the neuro-controller – between 2 and 10 seconds.
For a single upload this time requirement may seem passable, but since the up-
load has to be repeated after each network modification, this shortly sums up
to a major bottleneck of the controller design process. This is especially prob-
lematic if a controller is faulty and the designer has to test many settings to
find the cause of the problem. A second drawback is that for some experiments
additional persons are required to prepare the robot for each test (e.g., to posi-
tion the robot in a certain posture and to arrange the surrounding environment
objects properly) or to supervise the robot during runtime (e.g., to prevent dam-
age or to support the robot in early design phases). Thus, several persons might
be needed to develop a single neuro-controller. And finally, as with every use of
physical hardware, the robot is exposed to potential damage and wearout. This
further increases the personnel effort and increases the costs.



Though, developing the controller directly on the robot also has a great
advantage: All developed controllers are guaranteed to work on the hardware,
matching all limitations and attributes of the physical machine. A separate adop-
tion phase after the major controller design, as is required for the workflow
described in the next section, is unnecessary.

2.2 Typical Workflow for Hybrid Controller Design With
Simulation, Evolution and Hardware

In difference to the previous workflow, a neuro-controller can also be designed
in simulation, optionally supported by evolutionary algorithms. The neuro-con-
trollers are in our context designed and simulated with the NERD Toolkit, im-
plemented at the Osnabrück University in Germany (see section 3 for details).
To upload a controller to the Myon robot, its network has to be exported as
BrainDesigner project and can then be uploaded with the BrainDesigner appli-
cation. Exporting controllers to the BrainDesigner format is fast and has the
additional advantage, that networks can be extended on-the-fly with features
that are usually very time-consuming to be done manually in the BrainDesigner.
Such extensions are used for several of the proposed workflow improvements and
will be described in the following sections. A typical workflow to design neuro-
controllers with the NERD software is shown in figure 2.

In this diagram the lower part is very similar to the first approach. How-
ever, the loop between design and observation on the physical robot has been
extended by a second loop in the upper part. The major controller design pro-
cess now happens in this second loop, namely the controller design in the NERD
editor and the testing of the controller with the simulated Myon robot. Option-
ally, an analysis phase can be added, that allows an in-depth examination of the
neuro-controllers. Also optionally, the design process can be assisted with com-
putational optimization algorithms, such as neuro-evolution. Neuro-evolution
directly on the physical robot is very difficult, therefore, such optimization is –
in practice – usually limited to simulation. Phases of computational optimiza-
tion, manual design, analysis and tests on the physical machine can alternate
arbitrarily.

As can be seen, the most problematic phases with respect to time, manpower
requirements and maintenance in the mandatory part of the process (solid ar-
rows) can be identified in the lower part of the diagram, where only minimal
parts of the overall design takes place. However, the use of the robot cannot be
avoided altogether because of the modeling inaccuracies inherent to the simula-
tion. A final phase with adoptions to the physical robot usually is inevitable. But
the modifications required for this are often limited to slight changes of synaptic
weights and bias terms to account for the slightly different dynamical properties
of the physical robot.
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Fig. 2. Workflow of the controller design in simulation, optionally assisted by compu-
tational optimization algorithms. Most of the design phase happens in the upper part
of the diagram, where a direct access to the physical robot is not required. Phases
problematic with respect to time, manpower requirements and maintenance are indi-
cated with icons. Extra tasks are assistive tasks to complement the unavoidable main
tasks of network design and behavior observation (bold).

2.3 Problems and Inconveniences of Both Approaches

In both described workflows several problems and inconveniences can be identi-
fied that affect the development time of neuro-controllers in a direct or indirect
way. This section summarizes these problems and gives solution approaches to
improve the usability of the robot and the efficiency of the controller design
process.

Coping with Large Neural Networks. Neuro-controllers for robots equipped with
many motors and sensors, such as the Myon robot, frequently become quite large.
The Myon robot provides about 180 sensor and 80 motor neurons that can be
used all in the same network. Adding a few neurons for non-trivial processing
structures and some synapses, one can easily get networks with over 2000 neurons
and synapses. Such networks are difficult to handle.

A measure to cope with that is the usage of graphical design tools, such as
the BrainDesigner or the NERD Toolkit. They provide many features to ease
working with large networks, such as support for graphical network layouts (Sec.



4.1) and a structuring of the network into neuro-modules (Sec. 4.4). The NERD
Toolkit additionally allows various constraints on the networks to reduce the
number of free parameters (Sec. 4.5), provides a flexible concept of network
layers and views to enhance the comprehensibility of the networks (Sec. 4.6),
and contains a powerful and fast exporter for BrainDesigner projects (Sec. 7.2).

Network Delay and Reactivity. The neural networks on the Myon robot use
time-discrete dynamics. All neurons of a network are updated simultaneously.
Signals from the sensors, therefore, require several update steps to affect the
motor neurons, because a signal has to propagate over several synapses on its
path. This delay reduces the responsiveness of the robot, which becomes more
severe the more synapses have to be passed to get from the sensors to the motors.
To take account for this, neurons in the BrainDesigner can – with some work
– be executed in a specific, asynchronous order to speed up the processing in
critical subnetworks. To simplify this process, the NERD Toolkit provides order
dependent neurons as a comfortable wrapper on this feature. This is an effective
and easy to configure way to reduce the processing delay greatly (Sec. 5).

Network Optimization and Adaptation. The network structure and the network
parameters can be optimized rapidly by hand when using the network editor
in simulation (Sec. 6.1). The same parameters may also be optimized with the
help of evolutionary algorithms (Sec. 6.2). But once a neuro-controller has to
be adapted to the hardware, modifying a network becomes inefficient, because
every modification has to be tested on the hardware, requiring a time-consuming
network upload. As a countermeasure, Myon – also in combination with the
NERD Toolkit or the BrainDesigner – supports the adjustment of synapses and
bias terms at runtime directly on the robot, rendering many uploads unnecessary
(Sec. 6.3).

Debugging. Finding flaws and errors in a neuro-controller can be difficult. When
working with the simulator and the NERD network editor a number of analysis
tools can greatly assist in identifying causes for problems (Sec. 7.1). But also
on the Myon hardware activations of neurons can be observed at runtime with
the BrainDesigner software. NERD minimizes the effort required to observe any
neuron of a network using this feature (Sec. 7.2).

Maintenance Effort. The maintenance effort can be reduced on different scales.
Firstly, the use of the simulator – where possible – relieves the robot hardware
and avoids wastage and potential damage (Sec. 8.1). Secondly, manual sensor
calibration often can be avoided with proper neural structures, that, for instance,
automatically recalibrate the angle sensors as part of the behavior (Sec. 8.2).

Hardware Damage. Faulty adjusted neuro-controllers can easily damage the
hardware and its users. The use of a simulator can help preventing such dam-
age, because networks can be tested before they are transferred to the hardware
(Sec. 9.1). Another problem in this context exists when starting a controller:



Many controllers abruptly approach their initial posture, leading to fast, strong
motions, endangering people and the motors of the robot. This problem can
be avoided with proper network structures to fade controllers smoothly in (Sec.
9.3). Overly strong and enduring motor activations also can damage the mo-
tors or joints. This can be avoided on the network level with motor protection
sub-networks (Sec. 9.2).

Time Effort and Hardware Availability. The time effort can be greatly reduced
with a combination of the previously mentioned approaches. Using a simulation
and the network editor with its many usability tools makes it much faster to
develop the general behavior (Sec. 8.1) and allows more designers to work si-
multaneously with fewer available robots. The fine-tuning of controllers on the
hardware can be done rapidly with the help of the hardware extensions for net-
work attribute adjustments at runtime (Sec. 6.3). During the entire controller
development the neural networks remain clear and comprehensible (Sec. 4) and
thus also speed up the development process.

3 The NERD Toolkit

The Neurodynamics and Evolutionary Robotics Development toolkit (NERD)
[36] is a collection of platform independent libraries and applications for ex-
periments in the field of evolutionary robotics, artificial life, neuro-dynamics
and neuro-control. This open source project has been developed as part of the
ALEAR project with a special focus on the development of larger neuro-con-
trollers with up to approximately 5000 synapses and neurons. These are compa-
rably large neuro-controllers in that field. Therefore, to use computational opti-
mization in this domain, the new evolutionary method ICONE (Sec. 3.3) [34] has
been developed that allows to work with such networks in a more effective way.
As part of the evolutionary method, a comfortable graphical neural network edi-
tor has been implemented (Sec. 3.2). This editor can be used to construct entire
networks manually, or – as its main function – to prepare network structures
for evolution, to control constraints to reduce the search space and to analyze
evolved neuro-controllers.

An important statement of this article is that the NERD Toolkit – with
features partly specifically adapted to this class of complex robots – significantly
enhances the described workflow and reduces the time effort for the controller
design. The three main parts of this library that are most relevant for the neuro-
controller development are described briefly in the next sections.

3.1 Simulation of the Myon Robot

The NERD simulator is a multi-purpose simulator supporting different physics
engines and system calculation models to evaluate and test neuro-controllers.
Objects and agents in this simulator can either be implemented flexibly with a
powerful scripting language or as C++ plug-in. Simulation scenarios – usually



involving one or more agents and a number of environmental objects – can
be designed with the same scripting language. One feature of NERD is that all
parameters of all objects in the simulation are collected in a blackboard repository
so that all parameters can be interactively observed and modified at runtime.
This is useful not only when designing a simulation scenario, but also to examine
the behavior of agents closely and to define proper fitness functions for evolution.

For the Myon robot a detailed simulation model has been implemented. This
model includes the physical properties of the robot, models of the multi-motor
joints [12], models of the sensors, and a qualitative simulation of the vision
system. For performance reasons, the outer shapes of the body parts have been
simplified. Still, the simulation has to use a high update rate of 500 - 1000 Hz to
remain stable and to produce sufficiently accurate results. Because of that, the
simulation runs – on most computers – slower than real-time. To give an observer
still a realistic impression on the behavior dynamics, a camera modus is available,
that can be used to playback the observed behavior in real-time. The simulation
speed itself can be increased by using only parts of the robot in simulation. Like
the physical Myon robot, the simulated machine can be disassembled into its
body parts. So for experiments requiring only the arms, legs or the head, only
these parts can be used in simulation, which allows simulations running faster
than real-time.

Other robots can be implemented with similar accuracy using custom plug-
ins. This is important, because every robot has its own particularities that are
crucial to be modeled exactly. With plug-ins, any custom model can be added
to the simulator, so that no constraints are imposed by the simulator itself.

The simulator and the Myon model also support changes of the robot mor-
phology via parameters. This enables evolution experiments with a morphology
co-evolution. An example is the evolution of a basic controller for a behavior
developed with a simplified Myon robot (e.g., with larger feet, stronger motors,
shorter legs). Once the basic controller is found, an iterative optimization to-
wards more and more realistic morphologies can be applied, ending up with
a more complex controller working on the unmodified Myon model. Such evo-
lutions can sometimes be easier than evolutions directly on the undoubtedly
non-trivial machine. An interesting variant of this approach is the co-evolution
of the morphology parameters and the neuro-controllers, leading to different
search dynamics and, potentially, to hints for better robot morphologies.

3.2 Neural Network Editor

The NERD network editor (Fig. 3) is used to visualize and design neuro-con-
trollers in close interaction with the simulation. The network editor automati-
cally collects all sensors and motors of a simulated agent and provides these as
sensor and motor neurons of the network. Neurons and synapses can be added,
parametrized and modified using the mouse.

In difference to many common neural network models, NERD networks sup-
port two additional building blocks, the neuro-modules and the neuron-groups.
These elements are used to logically and hierarchically structure a network.



Fig. 3. The neural network editor of the NERD Toolkit.

Neuro-modules encapsulate their member neurons and hide them from neurons
outside of the module. To interact with other modules, selected neurons of that
module can be marked as input or output (in the network diagrams used in
this article these neurons are marked with I or O). Only these neurons can
have synaptic connections to neurons outside of a module. Modules can also be
added as sub-modules to other modules, resulting in a hierarchical structure.
The benefit of this structuring is a clear, functional and hierarchical separation
of the network, which increases comprehensibility. This leads to a strong restric-
tion of the possible synaptic connections and thus to a reduction of the search
space during evolution. Neuron-groups, on the other hand, are logical structure
elements. Any subset of neurons and modules can be assigned to a group. The
purpose of a neuron-group is to enforce certain constraints to its members, as
will be described in section 4.5.

Another difference to other network models is that NERD allows additional,
arbitrary properties for each network element to add further information to
each element. Adding such a network tag is called tagging. Network tags can
comfortably be managed with the editor, ranging from setting and changing, up
to finding and visualizing such tags in the network. Network tags are important
control elements, that can affect the network behavior (Sec. 5), the evolutionary
search (Sec. 3.3) or the export of a network to other formats (Sec. 8.2 and 7.2).

The network editor runs in parallel with the simulation and allows the anal-
ysis and visualization of the network dynamics at runtime (Sec. 7.1). This can
be combined with user interactions through the simulator or the network, such



as pushing the robot around to observe the network response, or by manually
overwriting neuron activities to test the reaction of the simulated machine.

An important feature of the network editor is its collection of tools that
simplify the handling of large neural networks, commonly found when working
with neuro-controllers for complex robots (Sec. 4.1).

3.3 Interactive Evolution Environment

Neuro-evolution in NERD is supported by different implemented evolution algo-
rithms. The neuro-evolution method primarily used to evolve neuro-controllers
for non-trivial, complex robots is the Interactively Constrained Neuro-Evolution
method (ICONE) [33, 34]. This is due to the usually large networks and the
corresponding high dimensional search space, that makes successful evolutions
without massive restrictions difficult to achieve. The application of such massive
search space restrictions is one of the main characteristics of the ICONE method.

ICONE is a structure evolution algorithm, that supports the evolution of both
the structure and the attributes (synaptic weights, neuron bias terms, plasticity
parameters) of a network. In addition to common modification operators, such
as insertion and removal of neurons and synapses, changes of synaptic weights
and changes of bias terms, ICONE provides a (customizable) rejection filter, a
constraint resolver, a modular crossover operator and manipulation operators
for modules.

Rejection Filter. This filter is a custom collection of functions that check the
network for arbitrarily selectable attributes. These filter functions can reject a
network, if certain characteristics are not met. A rejected network has to undergo
the entire mutation chain again, until it is approved by all filter operators, or
until a maximum number of mutations has been exceeded. In the latter case
the network is discarded and replaced by a network that passes the filter. This
ensures that networks known to be non-functional – such as networks where
relevant sensors or motors are not properly connected – are not evaluated to
avoid unnecessary computations.

Constraint Resolver. The most important operator of ICONE is the constraint
resolver. This operator applies the constraints, which were set by the user in the
network editor, and rejects all networks whose constraints cannot be resolved
completely. Constraints, in difference to filters, can actively modify a neural net-
work and, therefore, can restructure the network to meet specified criteria. Ex-
amples of constraints are described in section 4.5. The proper use of constraints
greatly reduces the search space and increases the success rate of evolutions.

Modular Crossover. Crossover operators in evolutionary algorithms combine two
successful solution candidates to produce a new one using parts of both candi-
dates. This leads to more diversity during search and facilitates the mixture
of different approaches. For neuro-evolution, crossover operators are difficult to
realize, because exchanging arbitrarily chosen network parts usually leads to



networks much less effective than their parents. This is because the network
structure is often changed so much by the operation that the resulting network
dynamics does not have much in common with both original networks. Modu-
lar crossover is an attempt to allow the exchange of partial solutions without
producing networks that are too different from their parent networks. Instead of
exchanging arbitrary parts of the network, only entire modules are exchanged.
In addition, these modules have to be compatible with respect of their neural
interface and an optional type tag. The network designer can determine which
parts of the network may be exchanged, and can also specify the possible ex-
change partners. In the context of a properly constrained network this can lead
to a non-destructive sub-network exchange with the mentioned advantages.

Module Manipulation Operators. ICONE is able to insert not only neurons and
synapses, but also entire neuro-modules from a module library. For each evolu-
tion the network designer can select all suitable neuro-modules from that library
and enable them for insertion. An advantage of this approach is, that previously
identified or evolved (functional) neuro-modules do not have to be reinvented by
evolution to be used in a network. Furthermore, the neuro-modules of the library
usually are well prepared, so that, for instance, the function of a module is fixed.
If evolution inserts such a prepared module, then the search space is only mini-
mally extended, because most of the neurons in the neuro-module are fixed and
cannot be changed by evolution. Furthermore, only the interface neurons of the
new module are visible for other parts of the network, thus a module with one
input, one output and an arbitrary number of internal neurons and sub-modules
increases the search space only as much as a single neuron would do. Having
also an operator to remove neuro-modules from a network, evolution can try to
combine and connect known neuro-modules, instead of single neurons, leading
to larger, functionally more complex networks.

Operators and Tagging. Network element tagging, as mentioned above, can influ-
ence the evolution process. Network tags can be used to protect network elements
from being changed or to restrict the ranges of attributes (e.g., weight and bias).
Tags can overwrite the global mutation parameters for certain network struc-
tures, for instance to enforce very small changes with a high probability in some
areas and larger changes with low probability elsewhere. Tags can also give hints
to the evolution operators, for instance to allow new synapses only between spec-
ified neuro-modules (enforced synaptic pathways), or to influence the distribution
of neurons and synapses throughout the network. All these network tags further
reduce the search space and bias the network towards desired network structures
and hereby helps finding good solutions.

4 Coping with Large Networks

Neural networks for behavior control of the Myon robot often become quite
large. Especially when networks with combined behaviors are created, as they



are required for language games in the ALEAR context. Such networks can
easily comprise over 2000 network elements. Working with and understanding
such networks is not easy. In many applications, small neuro-controllers are often
represented as n×n matrices with n being the number of neurons. The entries in
the matrix then represent the synapses going from neuron A (row) to neuron B
(column). This representation is sufficient for small networks, but does not work
for sparsely connected networks with hundreds of neurons: The weight matrix
would become too large and most entries of the matrix would be zero.

For larger networks graphical visualizations are more convenient. NERD vi-
sualizes the networks as graphs, indicating neurons as circles and synapses as
edges with an arrow at its end. To increase readability, inhibitory synapses have
a filled circle instead of an arrow. Non-zero bias terms are printed next to the
neuron and synaptic weights next to the synapses (for an example see figure 7
on page 27). Neuro-modules are shown as rectangular boxes spanning around
its member neurons and sub-modules. The entire network is drawn at the same
plain area, so that every synaptic pathway can be traced from its origin to its
target without changing the view. This is in contrast to the BrainDesigner soft-
ware, where modules are black boxes, that can be opened to change the view to
its inner parts. Because only the content of one module can be shown at a time,
this visualization requires some navigation and searching to trace a synaptic
pathway through a hierarchy of sub-modules.

Networks of this size, especially when visualized as a whole, can get unhandy
and confusing. Therefore, NERD provides a number of features to assist the
network designer when working with these large networks.

4.1 Network Layout

One problem of large networks is that it becomes difficult to identify the role of
each neuron and to comprehend the effects of their interconnection. The NERD
editor allows to layout all elements of a network with the mouse. This helps
to structure the network so that its function becomes clearer. For many robots
it makes sense to create a template network with a suitable layout as base for
all neuro-controllers to be created for this robot. Such a layout can be a simple
intuitive arrangement of the motor and sensor neurons according to their location
on the robot. This often clarifies at first glance which part of the robot is involved
in a neural structure. Also, related network structures, preferably encapsulated
into named modules, should be arranged close to each other. Names can be given
not only to modules, but also to individual neurons to point out their function.

4.2 Navigation and Search

A large network requires extensive navigation between the different network ar-
eas. The NERD editor supports bookmarks that can be set to any viewpoint and
enables the user to switch to any stored location with a key stroke. To find spe-
cific network elements, NERD provides a powerful search function: Each neuron,
neuron-group or neuro-module can be found by name, synapses can be found by



their weight and every network element can be found by its unique id. Also, net-
work elements can be found by their used neuron model functions, parameters
and network tags. All search queries are interpreted as regular expressions, so
elements can also be found knowing only parts of the desired parameter name.

4.3 View Modes

The elements of a neural network have may attributes, such as properties orig-
inating from tagging and network attributes (bias, weight, transfer function).
Many of these attributes have to be available to the network designer in a con-
venient way. To draw all this information in the network simultaneously would
be more confusing than helpful. Therefore, NERD supports different viewing
modes. These modes can be switched on and off with the keyboard. Useful view
modes, among others, are to mark the motor and sensor neurons, to identify the
input and output neurons of modules, to hide all unselected elements, to hide the
bias terms or synaptic weights, to show the transfer function of neurons, to hide
element names, to show unconstrained network parts that can be modified by
evolution, or to change the appearance of synapses. When designing a network
the designer simply has to switch between the different view modes to have a
fast access to all relevant information, without being distracted by too many
details.

4.4 Neuro-Modules

Neuro-modules, as already described in section 3.2, are an important way to
structure networks. Subdividing a large network into a hierarchy of neuro-mod-
ules according to their function, role or simply their corresponding robot body
parts, makes the network structure much more comprehensible. Furthermore,
the possible synaptic pathways are reduced, often also making the visualization
clearer. With appropriate names on the modules such a modularized network
can almost be read as conveniently as a computer program with functions.

4.5 Constraints

Constraints are a corner stone of the search space restriction of the ICONE
evolution algorithm. However, constraints are not only useful during evolution,
but also when manually constructing a network. The constraint resolver can be
triggered manually, leading to the same constraint resolving attempt as there
would be during evolution. In fact, when a network is prepared for evolution by
the experimenter, all constraints should be tested manually before starting with
the evolution to ensure that all constraints are resolvable without conflicts.

Resolving the constraints modifies a network until all constraints are met.
Examples of such constraints are module cloning, symmetries, attribute depen-
dencies, prevention or enforcing of mutual connections in a group, specific con-
nectivity patterns, and more. Such constraints are also helpful doing manual
network design.



The cloning constraint, for instance, can be used to have a single prototype
module (e.g., a neural position controller) and use modules with the clone con-
straint wherever such a module is needed. The structure of the module, its layout
and all attribute changes are automatically applied to all cloned modules when
the constraint is resolved. This makes it very fast to apply the same modification
to all parts of the network where the module is used.

As another example, symmetries can often be applied to neuro-controllers.
Because of the symmetric robot body, symmetry can be assumed for most con-
trollers where a specific function is required for both sides of the robot, e.g.,
grasping with the left and right arm or the simultaneous movement of both legs
during squatting. Using a symmetry constraint on one side of the network re-
duces the design work to the unconstrained side only, whereas the other side is
– mirror-inverted – completed automatically by the constraint. The symmetry
constraint can also be configured to work only on the network structure, allowing
differences at the weights and bias terms. NERD also supports special network
tags to make the neuron interface more compatible with symmetries. An exam-
ple is the FLIP tag, that mirrors the output of a neuron leading to the same
behavior as reversing the corresponding motor or sensor. The exporter of NERD
automatically extends the network with the necessary structures to realize this
effect also on the Myon hardware when a BrainDesigner project for the upload
procedure is generated.

A third constraint for manual design is the attribute dependency constraint.
This constraint allows the definition of variables and equations on neurons and
synapses, by tagging the elements with equation (EQ) and variable (EQ VAR) tags.
Synapses or neurons tagged with an equation calculate their weight or bias term
based on the weights and bias terms of neurons and synapses that have been
tagged with variable names. These variable names can be used in equations to
represent the corresponding weight or bias value (such as in the equation w =
(2 ∗ InputSynapse+MotorBias/4)). Synapses that, for instance, are expected
to have the same weight relation may be automatically calculated in that way
based on the weight of a master synapse. Adjustments of such dependent weights
and bias terms (manually or during evolution) only require a change of the few
network elements that are tagged to provide variables.

To summarize, constraints not only restrict the search space for evolution
greatly, but also reduce the design effort during manual construction.

4.6 Display Layers

In very large networks with hundreds of neurons the visualization can become
less reactive (due to the high computational effort of drawing so many elements)
and the network structures are more difficult to comprehend. To cope with this
NERD provides network layers. Each network element can be tagged with the
Layer tag to belong to one or more network layers. The user then can decide
which combination of layers is actually shown in the editor. With this strategy,
all network parts that are irrelevant for the current task can be hidden, so that
it becomes easy to focus on the current goal. Layers can, for instance, be used



to hide the recommended motor protection and auto-calibration networks of
sections 8.2 and 9.2, so that the designer can benefit from their function without
added complexity to the network visualization. Each network element can belong
to an arbitrary number of layers simultaneously. This allows very specific and
flexible view selections which are superior to a visibility control on the module
level only.

5 Reducing Network Delays

The neurons of discrete-time neural networks usually are updated simultane-
ously, meaning that their activation is calculated based on the neuron activa-
tions of the previous execution step. Therefore, the result of a network update is
by default independent of the order at which the neurons are actually updated.
This implies that a sensor signal, to have an effect on a motor neuron, requires
as many network updates as there are synapses to cross between the sensor and
the motor neuron. These delays can become quite long and affect the reactivity
of the robot. The network update rate on the Myon robot is 100 Hz, therefore,
a delay between three and ten update steps can – e.g., for a position control
network – lead to severe reactivity problems.

Neural networks on the Myon robot are represented and executed as a sequen-
tial byte code [13]. This byte code is not restricted to a specific neuron model,
but instead is able to execute any kind of sequential machine code. Such code
sequences can be arranged to a specific execution order. In case of the machine
code representing a neural network, the code representing the synapses is always
executed before the code representing the neuron activations. This mechanism
can be used to model neurons that are executed in a specific order, hereby not
using the neuron activations of the previous update step, but instead using the
current, partially already updated activations of the other neurons. In network
parts where the delay has to be as short as possible, that delay can be reduced
by executing the neurons in a suitable order. That order has to ensure that each
neuron only gets inputs from neurons that already have been updated in the
current update step. With this mechanism, a sensor signal may be propagated
from the sensor neuron to the motor neuron in a single update step.

When choosing the execution order of neurons great care has to be taken to
avoid undesired side effects. In a feed-forward structure without parallel path-
ways (Fig. 4a) setting an appropriate execution order is trivial. Problems may
arise as soon as parallel pathways (Fig. 4b) and recurrent connections (Fig. 4c)
are present and timing becomes relevant for the function of the structure. The
choice of the desired order, therefore, has to be done manually to ensure that the
output behavior of a subnetwork is not changed compared to the synchronous
update; the evolutionary algorithm cannot do this because of the lack of re-
quired knowledge about the function of each affected structure. In figure 4c, for
instance, every other choice of the execution order leads to a different outcome
and thus changes the original function of the module. Order dependencies have
to be neutral with respect to the desired function, so an understanding of the
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Fig. 4. Delay reduction through order dependent updates. The output of the modules
remains similar, only the processing speed is increased. The examples indicate the cho-
sen execution order (shown as numbers in the neurons) for (a) a simple feed-forward
structure without parallel pathways (delay reduced from 5 to 1), (b) a feed-forward
structure with parallel pathways (delay reduced from 3 to 1) and (c) a recurrent struc-
ture (delay reduced from 3 to 1).

relation between network structure and that desired function is mandatory. The
additional effort, however, often pays off. As an example, the delay in a position
control module of five update steps can be reduced to a single update step, which
increases the reactivity of the controller significantly.

Making neurons order dependent is simple with the NERD network editor.
Neurons have to be tagged with the ODN (Order Dependent Neuron) tag set
to an arbitrary number. Neurons are then updated from lower to higher ODN
numbers during a network update. Neurons without this tag are supposed to
have an ODN number of zero. A neural network with these tags works as well
in the NERD simulator as on the Myon robot. When a network is exported as
BrainDesigner project, then the neuron order is transformed into appropriate
model neurons with specific machine code accounting for the execution order.

6 Controller Optimization

After having obtained a basic network structure with a reasonable performance,
synaptic weights and bias terms have to be fine-tuned to optimize the desired
behavior. Often, also the network structure is not irrevocable and thus also part
of the optimization process. In neural networks even small changes in synaptic
weights or bias terms – not to mention structural changes – can have a strong
effect on the resulting behavior. Hence, this optimization can be difficult and
time-consuming, especially when done on the hardware without additional tools.

6.1 Optimization with Network Editor and Simulator

A fast way to optimize networks, that works for many optimization scenarios,
is again to use the robot simulator and the NERD network editor. Attributes of
the network can rapidly be changed manually and the outcome can be observed
immediately. Different scenarios can be tested reliably and reproducible with
the simulator. Combining these adaptations with the constraints described in



section 4.5 can further speed up the optimization process. And by using the
NERD tools to ease working with large networks (Sec. 4) also the optimization
of rather complex networks is feasible.

6.2 Neuro-Evolution with the ICONE Method

Optimization can be done with computational optimization methods. This re-
lieves the network designer from tedious try-and-error search and may lead to
less intuitive but highly interesting new control paradigms. The preferred method
in NERD is the use of the evolutionary method ICONE (Sec. 3.3). Because of
the usually large networks and the corresponding high dimensional search space,
evolution from scratch, starting without a given network structure, will likely
fail. Hence, a hybrid, partially interactive approach is proposed. To bootstrap
evolution and to reduce the search space, a (set of) starting network(s) has to be
chosen and constrained based on reasoning, experience and domain knowledge.
The more constraints such a starting network has, the smaller the search space
becomes, which usually has a positive effect on the evolution outcome. Design-
ing a starting network also has the advantage, that the network designer can
decide on many aspects of the network, such as the involved sensors and motors,
the overall joint control strategy (e.g., position control, force control, velocity
control), the requirement of a sensor preprocessing, underlying utility modules
(as shown in Sec. 9.2) or a specific control paradigm (e.g., central pattern gen-
erators, reflex loops, hierarchical approaches). This leads to a larger variety of
control approaches.

The preparation of an evolutionary optimization requires additional work.
Evolution requires an evaluation scenario in which the performance of solution
candidates is rated. These scenarios usually involve a (partial) Myon robot and
objects in its environment to interact with. A proper choice of the evaluation
scenario is an important requirement to afford successful evolutions. Strongly
related to the evaluation scenario is the definition of a performance measure, the
so-called fitness function. The design of the fitness function often decides about
success or failure of an evolution experiment. The fitness measure should provide
strong gradients in the fitness space, because evolutionary algorithms belong to
the gradient descent optimization algorithms [3]. Combining this requirement
with a good performance description of the desired behavior can become quite
difficult. Sometimes it is easier to evolve a network stepwise, starting with simple
evaluation scenarios and increasing the complexity of the scenarios incrementally
[8]. Neuro-controllers then do not have to cope with performance criteria that
may be too difficult in the beginning.

Once defined, the evaluation scenario and the fitness function can be used
multiple times to develop different approaches to solve the same behavior task,
which justifies the design effort. To be able to do many evolution runs, one
needs adequate computational power. Accordingly, NERD supports the use of
computer clusters to reduce the run-time of evolution experiments using parallel
evaluations on multiple processors or computers.



6.3 Direct Optimization on the Myon Robot

For every neuro-controller there is a phase when it has to be adapted to the
physical hardware. As mentioned earlier, the simulator cannot be absolutely
precise, so final changes are commonly required. This phase usually is costly
in terms of time, because after every modification of synapses and bias terms
the controller has to be uploaded to the robot. To avoid these frequent uploads,
Myon – in combination with the BrainDesigner or NERD – provides a convenient
way to adapt synapses and bias terms at runtime directly on the hardware.

For this a useful feature of the Myon robot is exploited: The robot supports
hardware extensions that can link to the communication bus and participate in
the data exchange. That way, such extensions can provide their own set of neu-
rons and communicate their activations on the bus. Accordingly, network parts
running on other control boards of the Myon robot can access these neurons like
to any other local neuron. A useful class of hardware extensions are potentiome-
ter boards (examples are shown in figure 5) providing a number of adjustable
potentiometers to directly control the activation of corresponding local neurons.
This, in fact, realizes globally accessible neurons whose activation can be ad-
justed at runtime. Potentiometer boards are usually used to control the function
of a running neuro-controller, for instance by activating or suppressing different
sub-behaviors or modes.

Fig. 5. Examples of a potentiometer board. Midi controller boards, such as the one
shown here, can be modified so that their rulers (here potentiometers) directly change
the neuron activity of associated local neurons. These neurons are accessible from all
control boards of the Myon robot via communication bus and can be used to influence
the network dynamics.

Potentiometer boards are also suitable to adjust bias terms and synaptic
weight at runtime, given suitable extensions. To adjust a bias term a simple
synapse has to be added from such a controllable neuron to the neuron whose
bias term is to be optimized. At runtime the activation of the controllable neuron
can be adjusted using the corresponding potentiometer until the behavior is



acceptable. Then the activation setting of the controllable neuron has to be read
out with the BrainDesigner software. The obtained activation now can be set as
bias term to the neuron that had to be optimized.

For synaptic weights this is more difficult. NERD provides a specific ad-
justable synapse type, that requires additional parameters. The first parameter
denotes the id of the adjustable neuron whose activation is used to calculate
the weight. The other two parameters determine the range in which the synapse
can be adjusted. The synaptic weight then is calculated by mapping the activa-
tion from the activation range [−1, 1] of the controllable neuron to the specified
adjustment range of the synapse. The weight of the synapse then is calculated
anew at each network update based on the current activation of the controllable
neuron.

Any synapse can be turned into an adjustable synapse with a single click in
the network editor and changed back to a standard synapse. This makes it very
efficient to select a set of synapses and neurons to be adjusted on the Myon robot.
When networks are finally exported as BrainDesigner projects, an additional
adjustable synapse model is added that behaves similar to the simulation. Once
uploaded to the robot, the adjustable neurons can be modified at runtime by
the potentiometer boards leading to an adaptation of the corresponding synaptic
weights. In common cases, where the adjustment involves several synapses that
are expected to have the same weight or a fixed weight relation, these synapses
can be adjusted with a single control neuron.

Because the networks behave similar in simulation and on the hardware, the
transfer of the identified synaptic weights back to the network is trivial. The
activity of the controllable neuron is obtained with the BrainDesigner and set
as bias term to the corresponding neuron in simulation. All dependent synapses
automatically change their weight according to their specified adjustment range.
The synapses now can be changed back to standard synapses and the new weights
become persistent.

7 Debugging Neuro-Controllers

Neural networks, especially large ones, are not easy to comprehend and to han-
dle. If the robot does something unexpected it may become difficult and time-
consuming to find the reason for this. This is particularly difficult if the neuro-
controller is running on the hardware, which makes it complicated to monitor
internal neural activities. Myon, in principle, supports the observation of neu-
ral activities through the BrainDesigner software, but this requires quite some
work. Nevertheless, the observation of neural activities at runtime is an essential
part of any debugging process, because otherwise there is no way to verify and
analyze the network dynamics.

7.1 Analysis Tools in Simulation

Debugging in simulation is much faster than on the hardware. Wherever possible
the analysis should be done in simulation. The first reason is that it is usually



easy to create repeatable simulation scenarios, in which the observed problem
can be reliably replicated. The second reason is that all neural activities are
available in the network editor and can be analyzed and visualized with many
tools. Thirdly, to see effects of changes applied to probe the network, no time-
consuming uploads to the hardware are necessary. Also, the activities of neurons
can be manually influenced at runtime to further get an idea about the involved
coherences, which is not possible on the hardware.

Plotting and Visualizations. NERD provides a number of ways to visualize and
analyze neural networks. The default setting of the editor is to draw all neurons in
colors, representing their current activity (compare Fig. 3 on page 12). Red tones
represent positive activations, blue tones negative ones. With this the network
designer can have an overall view of the network activities and can often spot
problematic areas, for instance areas with unexpected activation patterns, such
as unchanging, overly strong or too variable activations. To analyze the activity
of a neuron over time, any set of neurons can be plotted with time series plots
(compare Fig. 6, left). This makes even rapid activation developments visible and
the activations of related neurons comparable. Time series plots can be created
for both, the internal activation (before applying the transfer function) and the
output activity (after applying the transfer function) of a neuron. Additional
information can be obtained using first return map plots and phase space plots
(Fig. 6, right). These plots give additional insights into the characteristics of an
activation pattern.

Fig. 6. A selection of plotters to analyze the neural networks at runtime: Time series
plots for neuron output and activation in different configurations (left), first return
maps in different modes (right).

Networks can also be analyzed numerically as isolated dynamical systems.
For this a number of analysis tools from dynamical systems theory are available,
such as bifurcation diagrams, iso-periodic plots, basin of attraction plots and
trajectory plots [17,27,39].



Pruning Experiments. To identify problematic network areas and to avoid side-
effects from supposedly unrelated network parts, virtual pruning experiments
are helpful. Synapses in NERD can be temporarily disabled, making sure that
certain network areas are fully isolated or disconnected. Because the synapses
do not have to be deleted for this, all their configurations are preserved.

7.2 Activation Monitoring on the Hardware

The BrainDesigner software is able to create time series plots, but this holds
only for activations available on the communication bus. To make the activity
of a neuron visible on the communication bus, the user has to add and configure
a new virtual sensor neuron, find a free address on the communication bus and
connect a synapse from the observed neuron to the new sensor neuron. Then,
after uploading the network to the Myon robot, the user can choose the sensor
neuron in the BrainDesigner to be monitored and plotted as time series. Alter-
natively the entire bus can be recorded into a text file during the test and then
be analyzed later. Both options are expensive with respect to time and effort.

NERD provides a simpler mechanism for networks created in the network
editor. These networks can be exported by the editor to BrainDesigner projects
including the necessary modifications required to add neurons to the communi-
cation bus and to configure the BrainDesigner to start monitoring the affected
neurons with time series plots. A neuron simply has to be tagged with the BDN -

Out tag. The optional value of this tag specifies a plotter id and herewith allows
to assign the neuron to one of multiple plotter windows to create custom collec-
tions of time series plots. If the BDN Out tag is used on a neuron not available on
the communication bus, a free address on the bus is automatically chosen and
the required network structures are added by the exporter. The choice of the
bus address can also be overwritten manually with the BDN BOARD INTERFACE

tag. This is rarely needed to optimize the distribution of the network on the
controller boards. Tagging neurons in that way makes it easy to specify the ob-
served neurons via NERD without the need of changing the network structure
or to configure the BrainDesigner manually.

7.3 Probing Networks on the Hardware

If a network cannot be analysed using the simulator – for instance if the problem
only occurs in combination with the hardware – then the technique described in
section 6.3 combined with the time series plots presented in the previous section
can be used to probe the network at runtime with a potentiometer board and to
analyse its resulting activation patterns. This avoids time-consuming uploads of
the network and allows detailed analysis of the active controller on the hardware.

8 Reducing Maintenance Efforts

When working with hardware, significant effort is required for maintenance and
repair. Robots prototypically built for scientific experiments are in this respect



much more affected than commercial robotics platforms, that already had many
design iterations to increase robustness and to reduce wastage. And even there,
robustness is often not at a level that is standard for most consumer electronics.
The Myon robot is still in its early release phase and the durability with respect
to wastage and the overall robustness is still constantly improved. However, the
mechanics is still not optimized for fail-safe robustness, so improper handling
can damage the machine1. Examples of such improper handling are strong im-
pacts on the body, moving joints too fast into their dead stops, overheating of
the motors through exhaustive use, or producing shortcuts due to careless use
of metallic objects near the electronic boards. The robot also has some wear
parts, that regularly have to be replaced or readjusted after a longer usage. Fur-
thermore, some sensors have to be calibrated before usage, such as the angular
position sensor of the joints. And when using battery packs as power supply,
these also have to be maintained and charged. All these aspects, ranging from
sensor calibration over routine maintenance to damage repair are here summed
up with the term maintenance.

Because a noticeably fraction of the resources are engrossed by maintenance –
especially when multiple robots are used simultaneously – and because required
maintenance often interrupts network designers during their work, a reduction
of this effort enhances the workflow, increases the time available for the network
design and, therefore, leads to a faster controller development.

8.1 Behavior Development with the Simulator

One way to greatly reduce the maintenance effort is simply not to use the hard-
ware. Major parts of a neuro-controller can also be developed with the simu-
lator. This especially makes sense when new control paradigms are tested. In
this case, using a simulator prevents accidental improper behavior (as described
above) that is likely to occur when using new or less reliable control strategies.
Once a promising neuro-controller is found and tested with the simulator, this
controller gets transferred to the physical Myon robot. As a result, only a small
part of the controller development, namely the optimization of a controller for
the physical machine, takes place on the hardware.

In some cases a behavior controller cannot be fully developed by simulation
only. This affects all controllers that are very sensitive to differences between
the simulated and the physical robot. But also here, at least the basic neuro-
controller structure can be developed with the NERD simulator, leaving only
the sensitive network parts to be further developed on the physical machine.

An additional advantage of using the simulation is that more network de-
signers can work in parallel with less dependency on hardware resources (except
of a computer), at the same time reducing the number of required robots. This
additionally diminishes the maintenance effort.

1 Since 2011 there has been significant progress in making the Myon robot durable and
reliable. In its current mature state, the robot requires much less sensor calibrations,
the joints and cables are protected against damage and the overall robustness is
comparable to many commercial robots.



8.2 Automatic Sensor Calibration

In some cases, certain maintenance can also be taken care of by a neuro-controller
itself. Some sensors of the Myon robot, especially the angular sensors of the
joints, have to be carefully calibrated before usage. Slight variations in the sensor
calibration can also occur between different robots or exchanged body parts.
The sensors can also be altered by improper handling during experiments, for
instance when the sensors are accidentally touched. Nevertheless, many neuro-
controllers require a reliable adjustment of the sensors to work properly. As a
result, a frequent sensor calibration is inevitable.

The designer of a neuro-controller can relieve this situation by using suitable
neuro-modules that allow the network to be used also with (slightly) inaccu-
rate sensor calibration. One way to do this is, when possible, not to work with
absolute, but instead with relative sensor values. Such controllers only need to
know how sensor values change, but not what their exact output is. An example
would be a vision-guided grasping behavior, where the positions of the joints
are controlled – without needing the exact joint angles – based on the relative
distance between the hand and the approached object.

However, many controllers do not allow such a relative sensor usage, for in-
stance position controlled motions. But also for these networks, a suitable neuro-
controller can make a manual sensor calibration superfluous. Figure 7 shows a
neuro-module that can be used to calibrate the sensors at the network level.
This strategy works for behaviors that have phases with known posture states,
for instance when standing straight or sitting on a chair. In such situations the
network can activate its calibration modules to determine and readjust suitable
bias terms for the sensors, so that the known pose and the sensor output matches.
When the calibration module is deactivated afterwards, the calculated bias term
remains active and permanently corrects the misaligned sensor signal. As error
measure other, more reliable sensors can be used, for instance the acceleration
sensors. In the example of a standing behavior, the acceleration sensors can be
used to align the limbs in a desired angle relative to gravity. For some joints
it can also make sense to drive the joints gently to one of their limits and to
calibrate the sensors at their dead stops, where the true angle is known (e.g.,
suitable for the hands and the head).

The main strategy of the sensor calibration network is to influence an angular
sensor with a corrective activation, that shifts the activation of the potentially
misaligned sensor to the correct level. This is done by the Correction neuron,
whose corrective activation is summed up with the measured sensor, so that the
corrected sensor signal is provided by neuron CorrectedAngularSensor. Instead
of using the raw sensor signal, all neuro-modules in the network have to use
this corrected sensor signal. All neurons of the network have linear transfer
functions: The inputs and the Correction neuron have a range of [−1, 1], all
other neurons of the module a range of [0,1]. Because of this and the self-coupling
of weight 1.0, the activation of the Correction neuron can be kept constant if
the neuron is not otherwise influenced. If the DisableCalibration neuron is not
active, then calibration takes place and the activation of the Correction neuron



Fig. 7. A neuro-module used to determine and store a correction bias for an angular
sensor. Inputs I and outputs O provide the interface of the module. The diagram does
not show the position control module, that is required to move the corresponding joint
to the desired default angle, hereby closing the calibration loop through the affected
acceleration sensor.

is slowly changed. The direction of the change is determined by the difference
between a reference input (bias term of AccelSensorInput) and the actual input
(AccelSensor). For this, any sensor can be used that is directly dependent on the
angular position. This can be the angular sensor itself (for instance if calibration
is performed at the dead stops of a joint), or – as in the example – an acceleration
sensor, assuming the arm is driven by a neural position controller. The difference
between the reference and the actual input now shifts the corrective bias slowly
until this difference becomes zero. The angular sensor is then calibrated. The
calibration module can also be reset by inhibiting the Reset neuron.

9 Hardware Damage Avoidance

Section 8 already described potential risks of how the Myon robot may be dam-
aged by improper handling and harmful control. Damaging the robot may not
be the most frequent cause for delayed controller development, but one that,
once it occurs, can halt an entire workgroup. And because not every workgroup
has the resources and experts to do the repairs themselves, this can significantly
impact the whole development process. Consequently, damage should be avoided
right from the beginning. The next sections show some measures how to prevent
some of the more common problems leading to damaging.

9.1 Exhaustive Testing With the Simulator

Again, the first recommendation is to develop the neuro-controllers primarily
using the simulator. Potentially harmful control here is harmless until controllers
are actually transferred to the physical machine. This is especially important for
those design phases, where new control paradigms are applied and only marginal



experience with the resulting behavior is available. Before such controllers are
transferred to the physical machine and also after every major changes during the
transfer, the behavior should be exhaustively tested in simulation with respect
to movement speeds, problematic postures, overly strong or prolonged motor
activations and too abrupt direction changes of the motors. For this the robot
should be confronted with different simulation scenarios, covering both typical
and potentially problematic situations. The robot behavior should be observed
with the real-time camera extension of NERD to be able to judge the resulting
dynamics adequately. Furthermore, NERD allows to create time series plots of
variables of the simulation system, including – apart from neural activities – also
all parameters of the simulated robot, such as forces, joint positions and contact
points of collisions. Using time series plots for such critical variables reveals also
rapidly and only briefly occurring potential problems, such as single peaks and
fast oscillations of motor activities. Such problems can be missed on the physical
machine because their effect on the observable behavior can be minimal, even
though their negative effect on the motors can be severe.

9.2 Motor Protection Networks

Overly strong motor activations cannot be avoided in general, because in some
cases very strong motor forces are required to realize a certain behavior. Such
(preferably short) durations of strong motor activations are common when the
joints in the legs have to lift the body or when objects are carried with the
arms. The developer of a neuro-controller then has to take care that the robot
preferably resides in postures minimizing the required motor activations to avoid
overheating of the motors. Otherwise the motors shut off or, with some other
robots, motors may even get damaged. The Myon robot provides the temperature
measurements of all motors on its communication bus, so that controllers can
react on imminent overheating. In a few obvious cases, however, overheating can
be prevented right from the beginning, e.g., by using special neuro-modules to
prevent overly strong motor activations near the dead stops. Because the dead
stops of the joints are known hard limits, all approaches to reach angles beyond
that limit (e.g., with a position control module) lead to a continuous, strong
motor activation pressing the joint strongly into its dead stop, leading to a high
current flow and increased heat.

The neuro-module shown in figure 8 is an example of a motor protection
module that prevents this known cause of overheating. The network allows an
increasing suppression of the motor output when approaching the upper or lower
dead stop of a joint. The neurons in this network have linear transfer functions:
The left input and the right output neuron of the module have a linear range of
[−1, 1], all other neurons in the module a linear range of [0,1]. The network can
– with some modifications – also be realized with hyperbolic tangent transfer
functions, if more appropriate. The overall principle of this network is simple.
The desired motor activation (neuron DesiredMotorActivation) is split into its
positive and negative activation component (neurons Input(+) and Input(-))
and subsequently merged again to be forwarded to the motor neuron. Ignoring
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Fig. 8. Neuro-module to limit the motor activation near the dead stops of a joint.

the left part of the network, this results in a simple forwarding of the unchanged
desired motor activation to the motor neuron. The additional delay can be coun-
tered with Order Dependent Neurons (Sec. 5), so that the entire module can be
executed in a single update step. The left part of the module is used to detect
the joint limits and to gradually suppress the Input(+) and Input(-) neurons
when the upper or lower limit is reached. For this, the positive and negative
component of the angular sensor neuron of that joint are separately compared
to fixed bias terms in the UpperLimit and LowerLimit neurons. The bias term
of each limit has to be chosen according to the actual dead stop angles of the
joint. The negative bias terms ensure that the corresponding limit neurons only
becomes active, if the joint angle is beyond the specified working interval of
the joint. This leads to a suppression of the corresponding negative or positive
component of the desired motor activation, effectively limiting further activation
towards the problematic direction. Forces in the opposite direction are not re-
duced. The weights of the inhibitory synapses in the middle can be used to adjust
the steepness of the suppression curve. Together with the negative bias terms
in the limiter neurons any linear suppression curve can be modeled (sharp or
smooth). The settings for each joint have to be specified independently accord-
ing to the characteristics of the typical usage of each joint. As a variation of this
module, the limits of this module may also be dynamically changed by adding
neurons to influence the limiter neurons depending on the current behavior or
motor conditions.

9.3 Behavior Fading

A common problem with many neuro-controllers is that these behaviors often
only work smoothly in a narrow posture range, particularly when controllers
use central pattern generators, direct reflex loops or fixed joint positions. Once
these behaviors are running, the motor control is smooth and unproblematic.
But during the start phase, i.e. when the robot is switched on, the motors have
to approach the starting positions for the behavior. This often leads to undesired,
strong movements, carried out without considering the current robot posture.
This is problematic not only because of the strong motor activities harming the



robot, but also because of the fast movements that potentially may hit or crush
persons. Furthermore, when the robot is switched on, then its joints can be in
any (relaxed) posture. Thus, starting the robot from inappropriate postures can
lead to collisions or deadlocks of body parts.

A countermeasure is to fade behaviors smoothly in, so that the motions are
slower and the electric current flow is low. A smoothly starting behavior can
also be stopped in time when the initial posture of the robot turns out to be
problematic.

Fading In Motors

Suppressor

1
1

-1

-1
-1

1

-1

1

Input (+)

Input (-)
Actual

MotorActivation

Desired
MotorActivation

Fig. 9. Neuro-module to fade a motor slowly in when the robot is switched on.

Fading in via Neuro-Module. Figure 9 shows one way to fade in a behavior. Such
modules can be added to all motors of the robot so that any behavior based on
such a network automatically fades in during its starting phase. The neuro-
module works similarly to the one described in section 9.2 used to protect the
motors from strong activations near its dead stops. The source of suppression now
comes from the Suppressor module. This module produces a linearly decaying
activation that is used to suppress the motor activations gradually. Starting
strongly, hereby suppressing the motor activations completely, the suppression
fades off over time until no suppression takes place. The duration of the fading
phase can be adjusted with the bias of the upper neuron in this module.

This network can also be combined with the previous network for motor pro-
tection. The Suppression module can be added to the motor protection network
and the inhibitory synapses simply have to be connected to the Input(+) and
Input(-) neurons of the motor protection module in figure 8.

Fading in via Synapse Models. NERD also provides a more convenient method to
turn any neuro-controller into a smoothly starting network. For this the network
simply has to be tagged with the FadeInRate tag set to a value that specifies
the duration of the fading phase. When the network is exported to a BrainDe-
signer project, then all motor neurons automatically are equipped with a special
synapse type that slowly increases its weight from 0 to 1, thus leading to a
smooth and global fading of the behavior.



10 Summary

This article described the workflow for the development of neural behavior con-
trol for complex robots, such as the humanoid Myon robot. It furthermore iden-
tified measures to improve this workflow significantly. Although demonstrated
exemplarily for the Myon robot in combination with the BrainDesigner and the
NERD Toolkit, most of these measures can also be applied with little adaptation
to other robots.

Two different approaches to neural network development are demonstrated to
point out problems and inconveniences with respect to design time, manpower
requirements, robot usability and maintenance. The identified main problems
are:

– the handling and understanding of the often large neuro-controllers
– a decrease of the robot’s reactivity due to long delay lines that come with

non-trivial control structures
– the time-consuming controller optimization on the robot hardware requiring

many ’costly’ uploads to the hardware
– the difficult debugging and analysis of neuro-controllers, especially when

working directly on the hardware
– potential risk of damage for both the robot and its users
– the requirement of additional staff when designing complex behaviors and

the high number of required machines when working directly on the robot
– the time and effort required for maintenance and repair that frequently in-

terrupts the design process when working heavily with the hardware

The first approach uses the official interface software of the Myon robot
(BrainDesigner) to design networks directly on the hardware. The listed prob-
lems can be observed here very clearly.

The second approach uses the robot hardware and its physical simulation
together with an alternative neuro-controller design environment (the NERD
Toolkit). As described, this reduces many of the problems and facilitates addi-
tional design support, for instance by allowing the use of evolutionary algorithms
to optimize or construct controllers with effective analysis tools, and also by re-
ducing the use of the hardware. The latter leads to a reduction of potential
damage, less frequent maintenance, lower demands on manpower and a better
utilization of capacities, allowing more developers to work simultaneously with
a fewer number robots.

To simplify the controller design on the hardware – which is to some extend
required for both approaches – additional supportive measures have been imple-
mented, like monitoring neuron activities on the hardware or adjusting synaptic
weights and bias terms at runtime. With the NERD environment, the use of
these otherwise quite labor intensive features becomes very efficient, because
the required additional network structures are added automatically on demand.
Such automatic extensions are also used to cope with other described problems,
for instance to increase the robot reactivity by reducing network delays.



In addition to improvements in the network design software, some problems
can be avoided and reduced with appropriate neuro-controllers. Such useful neu-
ral structures, for instance to avoid damage to the robot or to automatically
recalibrate the robot’s sensors, are described to be used for more robust neuro-
controllers.

Bundled together the proposed workflow enhancements significantly improve
the neuro-controller design process and foster a faster development of more di-
verse, more robust behaviors for this class of robots.

11 Resources

11.1 Myon Robot

Fully assembled Myon robots can be purchased at the Institute of Neurorobotics
at the Humboldt University in Berlin. Instructions and blue-prints for the con-
struction the robot are open source and can also be obtained there:

http://www.neurorobotics.de/robots/myon en.php

11.2 BrainDesigner

The BrainDesigner ships with the Myon Robot and can also be separately ob-
tained at the Institute of Neurorobotics at the Humboldt University in Berlin.

http://www.neurorobotics.de/

11.3 NERD Toolkit

The Neurodynamics and Evolutionary Robotics Development Toolkit (NERD
Toolkit) is open source and free to use under the GNU General Public License
(GPL). The software can be downloaded at the homepage of the Neurocybernet-
ics workgroup of the Institute of Cognitive Science at the Osnabrück University:

http://nerd.x-bot.org

http://ikw.uni-osnabrueck.de/~neurokybernetik/

The documentation of the software can be found at

http://nerddoc.x-bot.org
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