
 1

Bytecode BrainDesigner

This simple instruction set is the default used in BrainDesigner. It is optimized to

be easily converted into binary code for other platforms.

Format

All commands are in the following format:

command dest, src1, src2, …

A command performs an operation, and writes the result to dest. Any parameters

are given after the destination.

Depending on the command the following sources and destinations are available:

 all Inputs/Parameters and Internals/Outputs of the module

 two temporary Values V0 and V1

If only one input and output exist (for example for synapses), those are addressed

using “Input” and “Output”.

 2

Command Overview

ABS Absolute value

ADD Addition

DIV Division

LOAD Load a value

MAX Maximum of two values

MIN Minimum of two values

MUL Multiplication

SAT Saturation +/-1

SUB Subtraction

TANH Hyperbolic tangent

WRITE Write to Outputs/Internals

 3

ABS

Converts a value to its absolute value.

Format

 ABS <src>

Allowed Values

 <src>: V0, V1

Sample

 ABS V0

Additional Information

 The destination register corresponds to the source register.

Compiling in ARM architecture

 The value is compared to 0. If it is smaller, the value is negated.

 Sample:

 CMP R8, #0 ; R8 = Source

 BPL #1 ; PL = Plus or Zero

 RSB R8, R8, #0

 Up to 3 cycles on STM32.

 4

ADD

Adds two values.

Format

 ADD <dest>, <src1>, <src2>

Allowed Values

 <dest>: V0, V1

 <src1>: Inputs/Parameters, V0, V1

 <src2>: Inputs/Parameters, V0, V1

Sample

 ADD V0, Input, x

Additional Information

 No additional information.

Compiling in ARM architecture

 The addition is done using a single ADD instruction.

 Sample:

 ADD R8, R8, R9

 1 cycle on STM32.

 5

DIV

Divides the first source value (dividend) by the second source value (divisor) and

writes it to a specific location.

Format

 DIV <dest>, <src1>, <src2>

Allowed Values

 <dest>: V0, V1

 <src1>: Inputs/Parameters, V0, V1

 <src2>: Inputs/Parameters, V0, V1

Sample

 DIV V0, Input1, Input2

Additional Information

The division by zero is catched and the result is always zero.

On the ARM processor, there are additional restrictions on the range of val-

ues for the dividend: it must be in the interval [-64, +64). The result has a

lower accuracy of only 10 binary digits (~ ±0,001).

Compiling in ARM architecture

The ARM processor provides a command SDIV for signed division. In or-

der to avoid division by zero, it is checked whether the divisor is zero, and

in this case the result is set to zero. In this case, the actual division section is

skipped.

The SDIV command provides a 32-bit result. The result or the dividend

must be shifted to the left by 15 binary digits. So accuracy is lost: either

there would be only two digits for the dividend or the result would have no

decimal places.

In this case a mixture is used: The dividend is shifted to the left by 10 bits

which results in a smaller range of values in the interval [-64, +64). The re-

 6

sult is shifted by the missing 5 bits, so the the number of decimal places is

reduced to 10 bit.

Sample:

 CMP R1, #0 ; R1 = Source 2 (Divisor)

 BNE #2

 MOVW R8, #0 ; R8 = Destination

 B #5

 LSL R0, R0, #10 ; R0 = Source 1 (Dividend)

 SDIV R8, R0, R1

 LSL R8, R8, #5

Up to 18 cycles on STM32.

 7

LOAD

Loads a value to a register.

Format

 LOAD <dest>, <value>

Allowed Values

 <dest>: V0, V1

 <value>: double value, Internals/Outputs, Inputs/Parameters

Sample

 LOAD V0, 0.25

 LOAD V0, Internal1

 LOAD V0, Input1

Additional Information

On the ARM processor fixed point numbers with 15 decimal place are used.

The accuracy is therefore 1/2
15

 ≈ 0,00003.

Compiling in ARM architecture

The fixed-point value is converted to 32 bit (17 integer places, 15 decimal

places) and is loaded to the desired register using MOVW and MOVT.

Sample:

 MOVW R8, #0x4000

 MOVT R8, #0x0000

2 cycles on STM32.

For Internals/Outputs the LDR command is used:

 LDR R8, [R12, #1]

1 cycle on STM32.

 8

MAX

Gets the greater value out of two values.

Format

 MAX <dest>, <src1>, <src2>

Allowed Values

 <dest>: V0, V1

 <src1>: Inputs/Parameters, V0, V1

 <src2>: Inputs/Parameters, V0, V1

Sample

 MAX V0, Input1, Input2

Additional Information

 No additional information.

Compiling in ARM architecture

src1 and src2 are compared: if src2 is greater, it is written to the destination

register, otherwise src1 is written to the destination register.

Sample:

 CMP R0, R1 ; R1 = Input2

 B 10, #1 ; Condition 10: Greater than

 ; or equal

 MOV R8, R1 ; R1 = Input2, R8 = Destination

 B 10, #0 ; Unconditional Branch

 MOV R8, R0 ; R0 = Input1

5 cycles on STM32.

 9

MIN

Gets the lesser value out of two values.

Format

 MIN <dest>, <src1>, <src2>

Allowed Values

 <dest>: V0, V1

 <src1>: Inputs/Parameters, V0, V1

 <src2>: Inputs/Parameters, V0, V1

Sample

 MIN V0, Input1, Input2

Additional Information

 No additional information.

Compiling in ARM architecture

src1 and src2 are compared: if src2 is lesser, it is written to the destination

register, otherwise src1 is written to the destination register.

Sample:

 CMP R0, R1 ; R1 = Input2

 B 10, #1 ; Condition 11: Less than

 MOV R8, R1 ; R1 = Input2, R8 = Destination

 B 10, #0 ; Unconditional Branch

 MOV R8, R0 ; R0 = Input1

5 cycles on STM32.

 10

MUL

Multiplies two values and writes them to a specific location.

Format

 MUL <dest>, <src1>, <src2>

Allowed Values

 <dest>: V0, V1

 <src1>: Inputs/Parameters, V0, V1

 <src2>: Inputs/Parameters, V0, V1

Sample

 MUL V0, Input, w

Additional Information

 No additional information.

Compiling in ARM architecture

The multiplication is done using the command SMULL, which multiplies

two 32-bit values and provides a 64-bit value as a result. This is brought

back to 32 bits using LSR, LSL and ORR according to the fixed-point for-

mat (15 decimal places). In addition to the destination register (R8 for V0,

R9 for V1) another destination register for the upper 32 bits is needed. For

this purpose, an unused register is used. It is pushed to the stack before the

operation and popped from the stack afterwards.

Sample:

 PUSH R9

 SMULL R9, R8, R0, R1 ; R0 = Input; R1 = w

 LSR R8, R8, #15

 LSL R9, R9, #17

 ORR R8, R8, R9

 POP R9

Up to 10 cycles on STM32.

 11

SAT

Saturates the specified parameter in the range +/-1.

Format

 SAT <src>

Allowed Values

 <src>: V0, V1

Sample

 SAT V0

Additional Information

 No additional information.

Compiling in ARM architecture

The ARM saturation command SSAT is used. The immediate value is 15,

therefore the value is saturated to 15 decimal places (+/-1).

 Sample:

 SSAT R8, R8, #15

 1 cycle on STM32.

 12

SUB

Subtracts the second source value from the first and writes it into a destination reg-

ister.

Format

 SUB <dest>, <src1>, <src2>

Allowed Values

 <dest>: V0, V1

 <src1>: Inputs/Parameters, V0, V1

 <src2>: Inputs/Parameters, V0, V1

Sample

 SUB V0, Input, x

Additional Information

 No additional information.

Compiling in ARM architecture

 The addition is done using a single SUB command.

 Sample:

 SUB R8, R8, R9

 1 cycle on STM32.

 13

TANH

Calculates the hyperbolic tangent. A system function is used.

Format

 TANH <dest>, <src>

Allowed Values

 <dest>: V0, V1

 <src>: Inputs/Parameters, V0, V1

Sample

 TANH V0, Input

Additional Information

 No additional information.

Compiling in ARM architecture

A prepared tanh routine, which uses a lookup table, is used. The compiled

code is basically a jump to this function. The value must be provided in re-

gister R0. So this register is pushed to stack and the desired input value is

copied to R0 (if it isn’t R0 anyway). After the branch the output value is

copied to the desired register.

Sample:

 PUSH R0

 MOV R0, R2 ; R2 = Input

 BL tanh

 MOV R8, R0 ; R8 = V0

 POP R0

Up to 7 cycles on STM32 (incl. branch) + execution time of tanh function.

 14

WRITE

Writes a value to an Output.

Format

 WRITE <dest>, <src>

Allowed Values

 <dest>: Outputs/Internals

 <src>: Inputs/Parameters, V0, V1, Internals

Sample

 WRITE Output, V0

Additional Information

 No additional information.

Compiling in ARM architecture

It is necessary to distinguish whether the source is already in a register, or

has to be temporarily stored in a register (for Internals).

If the source value is already in a register and the destination address is an

offset to Register R12 (which is the start address of the own data area in

RAM), the STR command is used.

Sample:

 STR R8, [R12, #0]

2 cycles on STM32.

If this is not the case, the value is loaded to register R0, which was pushed

to stack before. This value is written using the STR command and R0 is

popped from stack.

 15

Sample:

PUSH R0

LDR R0, [R12, #1]

STR R8, [R12, #0]

 POP R0

